Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples.

نویسندگان

  • M Marko
  • C Hsieh
  • W Moberlychan
  • C A Mannella
  • J Frank
چکیده

The feasibility of using a focused ion beam (FIB) for the purpose of thinning vitreously frozen biological specimens for transmission electron microscopy (TEM) was explored. A concern was whether heat transfer beyond the direct ion interaction layer might devitrify the ice. To test this possibility, we milled vitreously frozen water on a standard TEM grid with a 30-keV Ga(+) beam, and cryo-transferred the grid to a TEM for examination. Following FIB milling of the vitreous ice from a thickness of approximately 1200 nm to 200-150 nm, changes characteristic of heat-induced devitrification were not observed by TEM, in either images or diffraction patterns. Although numerous technical challenges remain, it is anticipated that 'cryo-FIB thinning' of bulk frozen-hydratred material will be capable of producing specimens for TEM cryo-tomography with much greater efficiency than cryo-ultramicrotomy, and without the specimen distortions and handling difficulties of the latter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Frozen-Hydrated Sections by Focused Ion Beam(FIB) Method

Cryo-electron tomography is an important research method to study the cell ultrastructure in a near native state, especially in the structural biology and cell biological fields[1]. There are a few cellular specimens that bacterial and eukaryotic cells can be examined directly by cryo-TEM [2, 3], but eukaryotic and tissue are difficult to realize for the specimen thickness. The primary method t...

متن کامل

Skeletal Muscle Triad Junction Ultrastructure by Focused-Ion-Beam Milling of Muscle and Cryo-Electron Tomography

Cryo-electron tomography (cryo-ET) has emerged as perhaps the only practical technique for revealing nanometer-level three-dimensional structural details of subcellular macromolecular complexes in their native context, inside the cell. As currently practiced, the specimen should be 0.1- 0.2 microns in thickness to achieve optimal resolution. Thus, application of cryo-ET to intact frozen (vitreo...

متن کامل

Skeletal muscle triad by FIB milling and Cryo-ET

Cryo-electron tomography (cryo-ET) has emerged as perhaps the only practical technique for revealing nanometer-level three-dimensional structural details of subcellular macromolecular complexes in their native context, inside the cell. As currently practiced, the specimen should be 0.10.2 microns in thickness to achieve optimal resolution. Thus, application of cryo-ET to intact frozen (vitreous...

متن کامل

A novel cryo-FIB lift-out procedure for cryo-TEM sample preparation

The focused-ion-beam (FIB) is the method of choice for site-specific sample preparation for Transmission Electron Microscopy (TEM) in material sciences. A lamella can be physically lifted out from a specific region of a bulk specimen with submicrometer precision and thinned to electron transparency for high-resolution imaging in the TEM. The possibility to use this tool in life sciences applica...

متن کامل

Npgrj_NMETH_1014 215..217

Cryo-electron microscopy can provide high-resolution structural information about cells and organelles in the nearly native, frozen-hydrated state. Applicability, however, is limited by difficulties encountered in preparing suitably thin, vitreously frozen biological specimens. We demonstrate, by cryo-electron tomography of Escherichia coli cells, that a focused ion beam (FIB) can be used to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of microscopy

دوره 222 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006